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is well-posed. Based on this result, a finite difference scheme is developed for solving the hyperbolic
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1. Introduction

Energy exchange between electrons and phonons in metal pro-
vides the best example in describing non-equilibrium heating dur-
ing the ultrafast transient [1–6]. In times comparable to the
thermalization and relaxation times of electrons and phonons,
which are in the range of a few to several tens of picoseconds, heat
continuously flows from hot electrons to cold phonons through
mutual collisions. Consequently, electron temperature continu-
ously decreases whereas phonon temperature continuously in-
creases until thermal equilibrium is reached. Intensity of heat
flow during non-equilibrium heating is proportional to the temper-
ature difference between electrons and phonons. The proportional
constant is termed the electron–phonon coupling factor, which is a
new thermophysical property in microscale heat transfer. The
mathematical equations for describing the non-equilibrium heat-
ing can be expressed as the well-known parabolic two-step model
[3,4]:

Ce
oTeð~x; tÞ

ot
¼ ker2Teð~x; tÞÞ � G½Teð~x; tÞ � Tlð~x; tÞ� þ Qð~x; tÞ; ð1Þ

Cl
oTlð~x; tÞ

ot
¼ G½Teð~x; tÞ � Tlð~x; tÞ�; ð2Þ

where Te and Tl are electron temperature and lattice temperature,
respectively; Ce and Cl are heat capacities, ke is the conductivity, G
is the electron–phonon coupling factor, and Q is the heat source.

The same concept has been extended to model pulsed heating
on amorphous media [6] and non-equilibrium heat transport in
porous media [7]. In place of electrons and phonons, energy cou-
pling between the solid and fluid/gaseous phases was described
in the same way. The thermalization and relaxation times for slow
ll rights reserved.
materials, such as lightly packed copper spheres or rough carbon
surfaces [6,8], can reach several tenths of a millisecond due to
the low-conducting phases involved in the assemblies. Transient
times on the order of 10�4 s, therefore, are considered to be ultra-
fast because of the pronounced thermalization and relaxation
behaviors observed in the sub-millisecond domain.

Although the above coupled Eqs. (1) and (2) have been widely
applied in analysis of microscale heat transfer [1–19], it has been
pointed out that when the characteristic heating time (which is
either the laser pulse duration or the time needed to heat a mate-
rial to a certain temperature) is much shorter than the electron
relaxation time of free electrons (the mean time for electrons to
change their states) in a metal, the parabolic two-step model
may be inadequate to describe the continuous energy flow from
hot electrons to lattices during non-equilibrium heating (see
Fig. 1 in [9]). Tien and Qiu [4] developed the hyperbolic two-step
heat transport equations based on the macroscopic averages of
the electric and heat currents carried by electrons in the momen-
tum space. Al-Nimr et al. [20–24] also studied the thermal behav-
ior of thin films using the hyperbolic two-step model. Chen et al.
[25,26] proposed a generalized hyperbolic two-step model for
studying ultrashort laser pulse interactions with metal films:

Ce
oTe

ot
¼ �r �~qe � GðTe � TlÞ þ Q ; ð3Þ

se
o~qe

ot
þ~qe ¼ �kerTe; ð4Þ

Cl
oTl

ot
¼ �r �~ql þ GðTe � TlÞ; ð5Þ

sl
o~ql

ot
þ~ql ¼ �klrTl; ð6Þ

where~qe and~ql are the heat fluxes associated with electrons and the
lattice, respectively, and kl is the lattice thermal conductivity. Here,
se is the electron relaxation time and sl is the lattice relaxation time.
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Nomenclature

C1,Ce,Cl,Cj,CN heat capacity
Ej difference in temperature related to carrier j
Gij,G carrier i – carrier j coupling factor
ke,ki,kl thermal conductivity
L length of interval
M number of grid points
N number of carriers
Q,Qj heat source
qe; qj; ql;~qj heat flux
ðqjÞ

n
m numerical solution of qj at (mDx,nDt)

Te,Tj,Tl temperature
ðTjÞnm numerical solution of Tj at m� 1

2

� �
Dx;nDt

� �
t, t0 time
x;~x Cartesian coordinates

Greek symbols
r gradient operator
rx;rx forward and backward finite difference operators,

respectively
Dt time increment
Dx spatial grid size
ej difference in heat source related to carrier j
X interval or region
se,sj,sl relaxation time
hj difference in heat flux related to carrier j
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It can be seen that if se, sl and kl are zero, the generalized hyperbolic
two-step model will reduce to the parabolic two-step model.

It has been noted that non-equilibrium heating porous media
[7] already involve a more complicated system than the two-car-
rier (electron–phonon) system in metals. Phase change in wicked
heat pipes, moreover, often involves non-equilibrium heating/en-
ergy dissipation among the solid wick, liquid, and vapor phases
[27]. As extensions are made to medical applications employing
femtosecond lasers [28], complexities of non-equilibrium heating
further evolve due to involvement of multiple carriers in biomed-
ical systems, including hard/soft tissues (proteins), water, and min-
erals at least. The ways in which thermal energy is distributed
among different carriers, as well as the characteristic times dictat-
ing the intrinsic behaviors of non-equilibrium heating, play a
dominant role in assuring the success of femtosecond-laser
technologies.

In this article, we extend the concept, which lies in the hyper-
bolic two-step model, to the case of the energy exchanges in a gen-
eralized N-carrier system with heat sources as follows:

C1
oT1ð~x; tÞ

ot
¼ r �~q1 �

XN

i¼2

G1i½T1ð~x; tÞ � Tið~x; tÞ� þ Q 1ð~x; tÞ; ð7aÞ

s1
o~q1

ot
þ~q1 ¼ �k1rT1; ð7bÞ

Cj
oTjð~x; tÞ

ot
¼ r �~qj þ

Xj�1

i¼1

Gij½Tið~x; tÞ � Tjð~x; tÞ�

�
XN

i¼jþ1

Gji½Tjð~x; tÞ � Tið~x; tÞ�Q jð~x; tÞ; ð8aÞ

sj
o~qj

ot
þ~qj ¼ �kjrTj; j ¼ 2; . . . ;N � 1; ð8bÞ
T2
Ti

TN

G2i (T2 – Ti)

GiN (Ti – TN)

G

T1

G12 (T1 – T2)

N1 (T1 – TN)

Fig. 1. Energy exchanges in a system with N carriers.
CN
oTNð~x; tÞ

ot
¼ r �~qN þ

XN�1

i¼1

GiN ½Tið~x; tÞ � TNð~x; tÞ� þ Q Nð~x; tÞ; ð9aÞ

sN
o~qN

ot
þ~qN ¼ �kNrTN; ð9bÞ

where Tj (j = 1, . . . ,N) are temperatures, Cj (j = 1, � � �,N) are heat
capacities, kj (j = 1, . . . ,N) are conductivities, Gij is the carrier i – car-
rier j coupling factor and positive constant, sj is the carrier j relax-
ation time, and Qj (j = 1, . . . ,N) are heat sources. Here, ð~x; tÞ is in
X � [0, t0], where X is assumed to be an interval in a 1D case or a
rectangular region in a 2D or 3D case. The summations with nega-
tive/positive signs in the front represent the energy lost/gained to/
from other carriers. The first summation in Eq. (8a), for example,
represents the volumetric energy density received by carrier j,
whereas the second summation in the same equation represents
the energy density released from carrier j. Non-equilibrium heating
is reflected by the temperature differences in the system. Fig. 1
shows the energy exchanges among dissimilar energy carriers,
which are assumed proportional to their temperature differences
as that assumed during electron–phonon coupling [1–5,29]. Here,
we assume that (1) different energy carriers are in perfect thermal
contact, (2) the coupling factors Gij only depend on the physical
properties of the carriers and not on the presence (or absence) of
impurities among these carriers, (3) thermal radiation exchange be-
tween these energy carriers is ignore, and (4) all N carriers are sta-
tionary in the system.

Furthermore, we assume that there are no heat losses from the
system in the short time response [6]. As such, the boundary con-
dition for ~qj (j = 1, . . . ,N) is

~qjð~x; tÞ ¼ 0; j ¼ 1; . . . ;N; ð~x; tÞ 2 oX� ½0; t0�; ð10Þ

where oX is the boundary of X.
In the next sections, we will analyze the well-posedness of the

above hyperbolic model for the generalized N-carrier system. A
stable numerical method for solving the hyperbolic model will
then be developed because the analytic solutions could be difficult
to obtain due to a large N. Finally, the scheme will be tested by an
example. The difference between the hyperbolic model and the
correspondent parabolic model will also be compared.

2. Energy estimate

For simplicity, we consider the hyperbolic model,Eqs. (7–10), in
one dimension and 0 6 x 6 L. Thus, the boundary condition can be
simplified as

qjð0; tÞ ¼ qjðL; tÞ ¼ 0; j ¼ 1; . . . ;N: ð11Þ
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Fig. 2. Configuration of a staggered grid.
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The initial conditions are assumed to be

Tjðx; 0Þ ¼ T0
j ðxÞ; qjðx;0Þ ¼ q0

j ðxÞ; j ¼ 1; . . . ;N: ð12Þ

To obtain an energy estimate, we assume that all coefficients
Cj,kj,Gij,sj are positive constants, and the solutions and the initial
conditions are smooth. Multiplying Eq. (7a) by T1(x, t), Eq. (8a) by
Tj(x, t), and Eq. (9a) by TN(x, t), respectively, integrating them over
[0,L], summing the results over 1 6 j 6 N, and performing some
algebraic manipulations, we obtainZ L

0

XN

j¼1

CjTj
oTj

ot
dx ¼

Z L

0

XN

j¼1

�
oqj

ox
Tjdx

�
Z L

0

XN

i;j¼1
i<j

Gij½Ti � Tj�2dxþ
Z L

0

XN

j¼1

TjQ jdx: ð13Þ

The left-hand-side (LHS) of the above equation can be written asZ L

0

XN

j¼1

CjTj
oTj

ot
dx ¼ d

dt

Z L

0

1
2

XN

j¼1

CjT
2
j dx: ð14Þ

Using the integration by parts, the boundary condition, Eqs.
(11), and (7b), (8b) and (9b), one may obtainZ L

0

XN

j¼1

�
oqj

ox
Tjdx ¼ �

XN

j¼1

Z L

0

oqj

ox
Tjdx

¼ �
XN

j¼1

½TjðL; tÞqjðL; tÞ � Tjð0; tÞqjð0; tÞ�

þ
XN

j¼1

Z L

0
qj

oTj

ox
dx

¼
XN

j¼1

Z L

0
qj

oTj

ox
dx

¼ �
XN

j¼1

Z L

0
qj

1
kj

sj
oqj

ot
þ qj

� �
dx

¼ � d
dt

Z L

0

1
2

XN

j¼1

sj

kj
q2

j dx�
Z L

0

XN

j¼1

1
kj

q2
j dx: ð15Þ

By the Cauchy–Schwarz inequality (i.e.,2ab 6 ea2 þ 1
e b2, where

e > 0 [30]), we obtainZ L

0

XN

j¼1

TjQjdx 6
Z L

0

1
2

XN

j¼1

CjT
2
j dxþ

Z L

0

1
2

XN

j¼1

1
Cj

Q 2
j dx: ð16Þ

Substituting Eqs. (14)–(16) into Eq. (13) gives

d
dt

Z L

0

1
2

XN

j¼1

CjT
2
j dxþ d

dt

Z L

0

1
2

XN

j¼1

sj

kj
q2

j dxþ
Z L

0

XN

j¼1

1
kj

q2
j dx

þ
Z L

0

XN

i;j¼1
i<j

Gij½Ti � Tj�2dx 6
Z L

0

1
2

XN

j¼1

CjT
2
j dxþ

Z L

0

1
2

XN

j¼1

1
Cj

Q 2
j dx:

ð17Þ

Taking out the third and fourth terms on the LHS because they
are non-negative, introducing FðtÞ ¼

R L
0

PN
j¼1½CjT

2
j þ

sj

kj
q2

j �dx and
QðtÞ ¼

R L
0

PN
j¼1

1
Cj

Q 2
j dx, and then integrating it with respect to t,

Eq. (17) can be further simplified as follows:

FðtÞ � Fð0Þ 6
Z t

0
FðsÞdsþ

Z t

0
QðsÞds: ð18Þ

By Gronwall’s lemma (i.e., if /(t) P 0 and w(t) P 0 are
continuous functions such that /ðtÞ 6 K þ L

R t
t0

wðsÞ/ðsÞds holds
on t0 6 t 6 t1, where K and L are positive constants, then
/ðtÞ 6 K expðL
R t

t0
wðsÞdsÞ on t0 6 t 6 t1, see [30]), we obtain for

0 6 t 6 t0

FðtÞ 6
Z t

0
1 � FðsÞdsþ ½Fð0Þ þ

Z t

0
QðsÞds� 6 et Fð0Þ þ

Z t

0
QðsÞds

� �
;

ð19Þ

and hence the following energy estimate for the N-carrier system
can be obtained asZ L

0

XN

j¼1

½CjT
2
j ðx;tÞþ

sj

kj
q2

j ðx;tÞ�dx

6et0

Z L

0

XN

j¼1

½CjT
2
j ðx;0Þþ

sj

kj
q2

j ðx;0Þz�dxþ
Z t

0

Z L

0

XN

j¼1

1
Cj

Q 2
j ðx;sÞdxds

( )
; ð20Þ

for 0 6 t 6 t0 and t0 is a constant.
Eq. (20) implies that the solutions are dependent upon the ini-

tial conditions and the heat sources, and hence the hyperbolic
model is well-posed based on the definition given in [31].

3. Finite difference scheme

To develop a stable finite difference scheme, which satisfies a
discrete analogue of Eq. (20), we first design a staggered grid where
fTjgN

j¼1 and fqjg
N
j¼1 are placed at different locations, as shown in

Fig. 2. Here, ðTjÞnm and ðqjÞ
n
m are denoted as the numerical approxi-

mations of Tjððm� 1
2ÞDx;nDtÞ and qj(mDx,nDt), respectively, where

Dx and Dt are the x-directional spatial and temporal mesh sizes,
respectively, and 1 6m 6M for Tj and 1 6m 6M + 1 for qj, so that
MDx = L. Furthermore, the first-order forward and backward finite
difference operators are defined as

rxum ¼
umþ1 � um

Dx
; rxum ¼

um � um�1

Dx
:

Thus, a Crank–Nicholson type of finite difference scheme for
solving Eqs. (7–9), in one dimension can be developed as

C1
ðT1Þnþ1

m �ðT1Þnm
Dt

¼rx
ðq1Þ

nþ1
m þðq1Þ

n
m

2

" #

�
XN

i¼2

G1i
ðT1Þnþ1

m þðT1Þnm
2

�ðTiÞnþ1
m þðTiÞnm

2

" #
þðQ 1Þnþ

1
2

m ;

ð21aÞ

s1
ðq1Þ

nþ1
m �ðq1Þ

n
m

Dt
þðq1Þ

nþ1
m þðq1Þ

n
m

2
¼�k1r�x

ðT1Þnþ1
m þðT1Þnm

2

 !
; ð21bÞ

Cj
ðTjÞnþ1

m � ðTjÞnm
Dt

¼ rx
ðqjÞ

nþ1
m þ ðqjÞ

n
m

2

" #

þ
Xj�1

i¼1

Gij
ðTiÞnþ1

m þ ðTiÞnm
2

� ðTjÞnþ1
m þ ðTjÞnm

2

" #

�
XN

i¼jþ1

Gji
ðTjÞnþ1

m þ ðTjÞnm
2

� ðTiÞnþ1
m þ ðTiÞnm

2

" #

þ ðQjÞnþ
1
2

m ;

ð22aÞ
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sj
ðqjÞ

nþ1
m � ðqjÞ

n
m

Dt
þ
ðqjÞ

nþ1
m þ ðqjÞ

n
m

2

¼ �kjr�x
ðTjÞnþ1

m þ ðTjÞnm
2

 !
; j ¼ 2; . . . ;N � 1; ð22bÞ

CN
ðTNÞnþ1

m � ðTNÞnm
Dt

¼ rx
ðqNÞ

nþ1
m þ ðqNÞ

n
m

2

" #

þ
XN�1

i¼1

GiN
ðTiÞnþ1

m þ ðTiÞnm
2

� ðTNÞnþ1
m þ ðTNÞnm

2

" #

þ ðQ NÞnþ
1
2

m ;

ð23aÞ

sN
ðqNÞ

nþ1
m � ðqNÞ

n
m

Dt
þ ðqNÞ

nþ1
m þ ðqNÞ

n
m

2
¼ �kNr�x

ðTNÞnþ1
m þ ðTNÞnm

2

 !
;

ð23bÞ

where 1 6m 6M for Eqs. (21a), (22a) and (23a), and 2 6 m 6M for
Eqs. (21b), (22b) and (23b). It can be seen that the truncation error
of the above scheme at grid points m� 1

2

� �
Dx;nDt

� �
for Tj and

(mDx,nDt) for qj is O(Dt2 + Dx2). The initial and boundary condi-
tions are given as

ðTjÞ0m ¼ T0
j m� 1

2

� �
Dx

� �
; ðqjÞ

0
m ¼ q0

j ðmDxÞ; ð24aÞ

ðqjÞ
n
0 ¼ ðqjÞ

n
Mþ1 ¼ 0; ð24bÞ

for any time level n, where 1 6m 6M for Tj and 1 6m 6M + 1 for
qj, and j = 1, . . . ,N.

To obtain a discrete energy estimate which is an analogue of Eq.
(20), we multiply Eq. (21a) by Dx ðT1Þnþ1

m þðT1Þnm
2 ; Eq. (22a) by

Dx ðTjÞnþ1
m þðTjÞnm

2 ; and Eq. (23a) by Dx ðTNÞnþ1
m þðTNÞnm

2 ; sum m over
1 6m 6M, and then add the results together with respect to j. This
gives

Dx
Dt

XN

j¼1

Cj

2

XM

m¼1

½ðTjÞnþ1
m �2 � ½ðTjÞnm�

2
n o

¼ �Dx
XN

j¼1

XM

m¼1

rx
ðqjÞ

nþ1
m þ ðqjÞ

n
m

2

" #
ðTjÞnþ1

m þ ðTjÞnm
2

" #

� Dx
XN�1

i¼1

i<j

XM

m¼1

Gij
ðTiÞnþ1

m þ ðTiÞnm
2

� ðTjÞnþ1
m þ ðTjÞnm

2

" #2

þ Dx
XN

j¼1

XM

m¼1

ðQjÞnþ
1
2

m
ðTjÞnþ1

m þ ðTjÞnm
2

:

ð25Þ

Using the summation by parts, Eq. (24b), and then Eqs. (21b),
(22b) and (23b), we can simplify the first term on the right-
hand-side of Eq. (25) as follows:

First Term ¼ �Dx
XN

j¼1

XM

m¼1

ðqjÞ
nþ1
mþ1 þ ðqjÞ

n
mþ1

2Dx

" #
ðTjÞnþ1

m þ ðTjÞnm
2

" #

þ Dx
XN

j¼1

XM

m¼1

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2Dx

" #
ðTjÞnþ1

m þ ðTjÞnm
2

" #

¼ �Dx
XN

j¼1

XMþ1

m¼2

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2Dx

" #
ðTjÞnþ1

m�1 þ ðTjÞnm�1

2

" #

þ Dx
XN

j¼1

XM

m¼1

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2Dx

" #
ðTjÞnþ1

m þ ðTjÞnm
2

" #
¼ �Dx
XN

j¼1

XM

m¼2

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2

" #
ðTjÞnþ1

m�1 þ ðTjÞnm�1

2Dx

" #

þ Dx
XN

j¼1

XM

m¼2

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2

" #
ðTjÞnþ1

m þ ðTjÞnm
2Dx

" #

¼ Dx
XN

j¼1

XM

m¼2

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2

" #
r�x
ðTjÞnþ1

m þ ðTjÞnm
2

" #

¼ �Dx
XN

j¼1

XM

m¼2

ðqjÞ
nþ1
m þ ðqjÞ

n
m

2

" #

� sj

kj

ðqjÞ
nþ1
m � ðqjÞ

n
m

Dt
þ
ðqjÞ

nþ1
m þ ðqjÞ

n
m

2kj

" #

¼ �Dx
XN

j¼1

XM

m¼2

sj

2kjDt
ðqjÞ

nþ1
m

h i2
� ½ðqjÞ

n
m�

2
� 	

� Dx
XN

j¼1

XM

m¼2

1
4kj

½ðqjÞ
nþ1
m �2 þ ½ðqjÞ

n
m�

2
n o

: ð26Þ

Furthermore, by the Cauchy–Schwarz inequality, we have

Dx
XN

j¼1

XM

m¼1

ðQ jÞnþ
1
2

m
ðTjÞnþ1

m þ ðTjÞnm
2

¼ 1
2

Dx
XN

j¼1

XM

m¼1

ðQ jÞnþ
1
2

m ðTjÞnþ1
m þ 1

2
Dx
XN

j¼1

XM

m¼1

ðQjÞnþ
1
2

m ðTjÞnm

6
1
4

Dx
XN

j¼1

XM

m¼1

Cj½ðTjÞnþ1
m �2 þ 1

4
Dx
XN

j¼1

XM

m¼1

1
Cj
½ðQ jÞnþ

1
2

m �
2

þ 1
4

Dx
XN

j¼1

XM

m¼1
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Substituting Eqs. (26) and (27) into Eq. (25) and then multiply-
ing by 2 give
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Taking out the third and fourth terms on the LHS of Eq. (28)
since they are non-negative, one may simplify Eq. (28) as
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Fig. 3. Maximum errors between numerical solutions of T1(T2 and T3 and the
corresponding exact solutions obtained using s1 = s2 = s3 = 0.01 vs. time.

W. Dai / International Journal of Heat and Mass Transfer 52 (2009) 2379–2389 2383
6
Dt
2

Dx
XN

j¼1

XM

m¼1

Cj ðTjÞnþ1
m

h i2
þ ðTjÞnm

 �2

� 	

þ DtDx
XN

j¼1

XM

m¼1

1
Cj
ðQjÞnþ

1
2

m

h i2
: ð29Þ

If we denote ~FðnÞ ¼ Dx
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j¼1Cj
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2, then Eq. (29)

can be further simplified as follows:
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Thus, we obtain from Eq. (30) that
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Using the inequalities (1 + e)n
6 ene for e > 0, and (1�e)�1

6 e2e

when 0 < e 6 1
2 ; we obtain for sufficiently small Dt
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Hence, the solutions of the scheme, Eqs. (21–24) satisfy, when
Dt is sufficiently small
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for any n in 0 6 nDt 6 t0.
Eq. (33) can be considered as a discrete analogue of Eq. (20). Using

the discrete energy estimate, one may obtain that the scheme, Eqs.
(21–24), is unconditionally stable. Indeed, if we assume that ðTjÞnm
and ðqjÞ

n
m; ðT̂ jÞnm and ðq̂jÞnm are the numerical solutions obtained based

on the different initial conditions,ðTjÞ0m and ðT̂ jÞ0m, and different heat
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1
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m , respectively, but the same boundary con-
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where 1 6m 6M for Eqs. (34a), (35a) and (36a), and 2 6 m 6M for
Eqs. (34b), (35b) and (36b) and

ðEjÞ0m ¼ E0
j m� 1

2

� �
Dx

� �
; ðhjÞ0m ¼ h0

j ðmDxÞ; ð37aÞ

ðhjÞn0 ¼ ðhjÞnMþ1 ¼ 0: ð37bÞ
Hence, we conclude from the above derivations that ðEjÞnm; ðhjÞnm

and ðeiÞnþ
1
2

m should satisfy the discrete energy estimate, Eq. (33)
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Fig. 4. Numerical solutions (a) T1, (b) T2, and (c) T3, and the corresponding exact
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for any n in 0 6 nDt 6 t0. Because there is no restriction on the
mesh ratio, Eq. (38) implies that the scheme is unconditionally
stable with respect to the initial conditions and the heat
sources.

4. Numerical example

To see the difference between the parabolic model and hyperbolic
model and to test the applicability of the finite difference scheme, we
consider a 1D simple three-component system as follows:
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Fig. 5. Numerical solutions (a) T1, (b) T2, and (c) T3, and the corresponding exact
where 0 6 x 6 1. We choose appropriate initial and boundary condi-
tions so that the exact solutions of the system can be expressed as
follows:

T1¼A1e�p
2t cospx; T2¼A2e�p2t cospx; T3¼A3e�p2t cospx; ð42aÞ

q1¼B1e�p2t sinpx; q2¼B2e�p2t sinpx; q3¼B3e�p
2t sinpx; ð42bÞ

where

A1 ¼
2þ 2d2 þ 3d3 þ 2d2d3

d1d2 þ d1d3 þ d2d3 þ d1d2d3 � 4
; ð43aÞ

A2 ¼
4þ d1 þ 3d3 þ d1d3

d1d2 þ d1d3 þ d2d3 þ d1d2d3 � 4
; ð43bÞ
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Fig. 6. Numerical solutions (a) T1, (b) T2, and (c) T3, and the corresponding exact solutions at t = 1.0 obtained using s1 = s2 =s3 = s = 0.0, 0.001,0.01, and 0.05.
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A3 ¼
6þ d1 þ 2d2 þ 6d3 þ d1d3 þ 2d2d3

ð1þ d3Þðd1d2 þ d1d3 þ d2d3 þ d1d2d3 � 4Þ ; ð43cÞ

B1 ¼ pd1A1; B2 ¼ pd2A2; B3 ¼ pd3A3; ð43dÞ

d1 ¼
2

1� s1p2 ;d2 ¼
2

1� s2p2 ; d3 ¼
2

1� s3p2 : ð43eÞ

It can be seen that the initial and boundary conditions for this
example are
T1ðx; 0Þ ¼ A1 cos px; T2ðx; 0Þ ¼ A2 cos px; T3ðx;0Þ ¼ A3 cos px;

ð44aÞ
q1ðx; 0Þ ¼ B1 sinpx; q2ðx; 0Þ ¼ B2 sinpx; q3ðx;0Þ ¼ B3 sin px;

ð44bÞ
q1ð0; tÞ ¼ q2ðx;0Þ ¼ q3ðx;0Þ ¼ q1ð1; tÞ ¼ q2ð1;0Þ ¼ q3ð1;0Þ ¼ 0:

ð44cÞ

Furthermore, when s1,s2 and s3 are zero, the hyperbolic model
will reduce to the corresponding parabolic model and the solutions
become T1 ¼ 5

4 e�p2t cos px; T2 ¼ e�p2t cos px; and T3 ¼ 3
4 e�p2t cos px.

We first tested the accuracy of the numerical scheme by choos-
ing Dt = 0.001 and Dx=0.1,0.01,0.001, respectively. The numerical
solutions were obtained by employing a Gauss–Seidel type of iter-
ation coupled with the Thomas algorithm for solving tridiagonal
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Fig. 7. Numerical solutions (a) T1, (b) T2, and (c) T3, and the corresponding exact solutions at t = 1.0 obtained using s1 = 0.0, 0.001, 0.01, and 0.05, and s2 = s 3 = 0.0.
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linear systems. The criterion for convergence in our computation
was set to be maxj¼1;2;3max16m6M jðTjÞnðIþ1Þ

m � ðTjÞnðIÞm j 6 10�12, where
I is the iterative index. Fig. 3 shows the maximum error between
the numerical solutions and the exact solutions at time level
nmaxj¼1;2;3max16m6M jðTnumerical

j Þnm � ðT
exact
j Þnmj) vs. time t(=nDt). It

can be seen from Fig. 3 that the numerical solutions show to be
second-order accurate, as expected.

Figs. 4–6 show the numerical solutions (symbols) of T1,T2 and
T3, and the corresponding exact solutions (lines) at t = 0.1,0.5,1.0,
respectively, where s1 = s2 = s 3 = s was chosen to be 0.0, 0.001,
0.01, and 0.05, respectively. It can be seen from these figures that
there are no differences between the numerical solutions and the
exact solutions. Similar results can be seen in Fig. 7, where
s1 = 0.0, 0.001, 0.01, and 0.05, respectively, and s2 = s3 = 0.0, at
t = 1.0, and in Fig. 8 for various values of s1,s2 and s3 at t = 1.0. In
these computations, we chose Dt = 0.01 and Dx = 0.01.

To see the difference between the hyperbolic model and the
corresponding parabolic model, we chose the same initial and
boundary conditions for both models as follows:

T1ðx;0Þ ¼
5
4

cos px; T2ðx;0Þ ¼ cos px; T3ðx;0Þ ¼
3
4

cos px;

ð45aÞ

q1ðx; 0Þ ¼
5
2
p sin px; q2ðx; 0Þ ¼ 2p sinpx; q3ðx;0Þ ¼

3
2
p sinpx;

ð45bÞ
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Fig. 8. Numerical solutions (a) T1, (b) T2, and (c) T3, and the corresponding exact solutions at t = 1.0 obtained using various values of s1,s2 and s3.
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q1ð0; tÞ ¼ q2ðx; 0Þ ¼ q3ðx; 0Þ ¼ q1ð1; tÞ ¼ q2ð1;0Þ ¼ q3ð1;0Þ ¼ 0:
ð45cÞ

When s1,s2 and s3 are zero, the system, Eqs. (39–41), corre-
sponds to a parabolic model and the exact solutions are
T1 ¼ 5

4 e�p2t cospx; T2 ¼ e�p2t cospx; and T3 ¼ 3
4 e�p2t cospx. On the

other hand, when s1,s2 and s3 are not zero, the system, Eqs. (39–
41), corresponds to a hyperbolic model. In the computation, we
chose Dt = 0.001 and Dx = 0.001 with s1 = s2 = s3 = 0.001, 0.01
and 0.05, respectively.

Fig. 9 shows the maximum difference between the hyperbolic
model and the corresponding parabolic model at time level
nðmaxj¼1;2;3max16m6M jðThyperbolic

j Þnm � ðT
parabolic
j Þnmj) vs. time t(=nDt).

When s1 = s2 = s3 = 0.001, as expected, the solutions obtained by
the hyperbolic model are close to those obtained by the parabolic
model. However, when s1 = s 2 = s3 = 0.01 and 0.05, there is a signif-
icant difference in solutions between the hyperbolic model and the
corresponding parabolic model. It can be seen from Fig. 9 that there
is a wave-like difference in solutions between these two models.
5. Conclusion

We have proposed a hyperbolic model for thermal analysis in a
generalized N-carrier system. The model is shown to satisfy an en-
ergy estimate, implying that the model is well-posed. Based on the
energy estimate, a finite difference scheme has been developed for
solving the hyperbolic model for thermal analysis in the multi-car-
rier system. The numerical scheme is proven to satisfy a discrete
analogue of the energy estimate, implying that it is unconditionally
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stable. Numerical results show the difference between the hyper-
bolic model and the corresponding parabolic model. The obtained
energy estimate and the numerical scheme in one dimension can
be readily generalized to the case of multi-dimensions.
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