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We extend the concept of the well-known hyperbolic two-step model for micro heat transfer to the case
of energy exchanges in a generalized N-carrier system. The model satisfies an energy estimate and hence
is well-posed. Based on this result, a finite difference scheme is developed for solving the hyperbolic
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that it is unconditionally stable. Finally, the scheme is tested by an example. The difference between the
hyperbolic model and the corresponding parabolic model for a multi-carrier system is also compared.
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1. Introduction

Energy exchange between electrons and phonons in metal pro-
vides the best example in describing non-equilibrium heating dur-
ing the ultrafast transient [1-6]. In times comparable to the
thermalization and relaxation times of electrons and phonons,
which are in the range of a few to several tens of picoseconds, heat
continuously flows from hot electrons to cold phonons through
mutual collisions. Consequently, electron temperature continu-
ously decreases whereas phonon temperature continuously in-
creases until thermal equilibrium is reached. Intensity of heat
flow during non-equilibrium heating is proportional to the temper-
ature difference between electrons and phonons. The proportional
constant is termed the electron-phonon coupling factor, which is a
new thermophysical property in microscale heat transfer. The
mathematical equations for describing the non-equilibrium heat-
ing can be expressed as the well-known parabolic two-step model
[3,4]:

¢ TED VL) - GT®.0) - TE O]+ QR (1)
¢ aT%):, t) =G[T. ()_{‘ t)— T,()?, t)], (2)

where T, and T; are electron temperature and lattice temperature,
respectively; C. and C; are heat capacities, k. is the conductivity, G
is the electron-phonon coupling factor, and Q is the heat source.
The same concept has been extended to model pulsed heating
on amorphous media [6] and non-equilibrium heat transport in
porous media [7]. In place of electrons and phonons, energy cou-
pling between the solid and fluid/gaseous phases was described
in the same way. The thermalization and relaxation times for slow
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materials, such as lightly packed copper spheres or rough carbon
surfaces [6,8], can reach several tenths of a millisecond due to
the low-conducting phases involved in the assemblies. Transient
times on the order of 10~ s, therefore, are considered to be ultra-
fast because of the pronounced thermalization and relaxation
behaviors observed in the sub-millisecond domain.

Although the above coupled Eqgs. (1) and (2) have been widely
applied in analysis of microscale heat transfer [1-19], it has been
pointed out that when the characteristic heating time (which is
either the laser pulse duration or the time needed to heat a mate-
rial to a certain temperature) is much shorter than the electron
relaxation time of free electrons (the mean time for electrons to
change their states) in a metal, the parabolic two-step model
may be inadequate to describe the continuous energy flow from
hot electrons to lattices during non-equilibrium heating (see
Fig. 1 in [9]). Tien and Qiu [4] developed the hyperbolic two-step
heat transport equations based on the macroscopic averages of
the electric and heat currents carried by electrons in the momen-
tum space. Al-Nimr et al. [20-24] also studied the thermal behav-
ior of thin films using the hyperbolic two-step model. Chen et al.
[25,26] proposed a generalized hyperbolic two-step model for
studying ultrashort laser pulse interactions with metal films:
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where . and g, are the heat fluxes associated with electrons and the
lattice, respectively, and k; is the lattice thermal conductivity. Here,
T is the electron relaxation time and 7, is the lattice relaxation time.
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Nomenclature

(1,Ce,C, G, Gy heat capacity

i difference in temperature related to carrier j
G, G carrier i - carrier j coupling factor

ke ki, k;  thermal conductivity

L length of interval

M number of grid points

N number of carriers

QQ heat source

qe,%,-,q,,ﬁj heat flux

(@)m numerical solution of g; at (mAX,nAt)

T, T, T, temperature

(Tj)m numerical solution of T; at ((m — 1)Ax, nAt)
t,to time

X, X Cartesian coordinates

Greek symbols

v gradient operator

Vi, Vz forward and backward finite difference operators,
respectively

At time increment

Ax spatial grid size

& difference in heat source related to carrier j

Q interval or region

7., T, T Telaxation time

0; difference in heat flux related to carrier j

It can be seen that if 7, 7, and k; are zero, the generalized hyperbolic
two-step model will reduce to the parabolic two-step model.

It has been noted that non-equilibrium heating porous media
[7] already involve a more complicated system than the two-car-
rier (electron-phonon) system in metals. Phase change in wicked
heat pipes, moreover, often involves non-equilibrium heating/en-
ergy dissipation among the solid wick, liquid, and vapor phases
[27]. As extensions are made to medical applications employing
femtosecond lasers [28], complexities of non-equilibrium heating
further evolve due to involvement of multiple carriers in biomed-
ical systems, including hard/soft tissues (proteins), water, and min-
erals at least. The ways in which thermal energy is distributed
among different carriers, as well as the characteristic times dictat-
ing the intrinsic behaviors of non-equilibrium heating, play a
dominant role in assuring the success of femtosecond-laser
technologies.

In this article, we extend the concept, which lies in the hyper-
bolic two-step model, to the case of the energy exchanges in a gen-
eralized N-carrier system with heat sources as follows:
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N
=Y GilTy&,t) - Ti& 0)]Q (X, 1), (8a)
i=j+1

oG - ‘

Ti%*%‘:*kjv'rjv j=2,...,N-1, (8b)
Ti
O Gni (Ti - Tx) -
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Fig. 1. Energy exchanges in a system with N carriers.

oTN(X, t L N1 . . B
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i=1

TNaE;LtN +Gn = —knVTy; (9b)

where T; (j=1,...,N) are temperatures, G (j=1,---,N) are heat
capacities, k; (j =1,...,N) are conductivities, G is the carrier i - car-
rier j coupling factor and positive constant, 7; is the carrier j relax-
ation time, and Q; (j=1,...,N) are heat sources. Here, (X,t) is in
Q x [0,tp], where 2 is assumed to be an interval in a 1D case or a
rectangular region in a 2D or 3D case. The summations with nega-
tive/positive signs in the front represent the energy lost/gained to/
from other carriers. The first summation in Eq. (8a), for example,
represents the volumetric energy density received by carrier j,
whereas the second summation in the same equation represents
the energy density released from carrier j. Non-equilibrium heating
is reflected by the temperature differences in the system. Fig. 1
shows the energy exchanges among dissimilar energy carriers,
which are assumed proportional to their temperature differences
as that assumed during electron-phonon coupling [1-5,29]. Here,
we assume that (1) different energy carriers are in perfect thermal
contact, (2) the coupling factors G; only depend on the physical
properties of the carriers and not on the presence (or absence) of
impurities among these carriers, (3) thermal radiation exchange be-
tween these energy carriers is ignore, and (4) all N carriers are sta-
tionary in the system.

Furthermore, we assume that there are no heat losses from the
system in the short time response [6]. As such, the boundary con-
dition for ¢; (j=1,...,N) is
Gix,t)=0, j=1,...,N; (X t)€0dQx[0,to], (10)
where 0 is the boundary of Q.

In the next sections, we will analyze the well-posedness of the
above hyperbolic model for the generalized N-carrier system. A
stable numerical method for solving the hyperbolic model will
then be developed because the analytic solutions could be difficult
to obtain due to a large N. Finally, the scheme will be tested by an
example. The difference between the hyperbolic model and the
correspondent parabolic model will also be compared.

2. Energy estimate

For simplicity, we consider the hyperbolic model,Egs. (7-10), in
one dimension and 0 < x < L. Thus, the boundary condition can be
simplified as
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The initial conditions are assumed to be
Tj(x,0) = T{(x), qx0)=¢q(x), j=1,... N (12)

To obtain an energy estimate, we assume that all coefficients
G, k;, Gy, 7; are positive constants, and the solutions and the initial
conditions are smooth. Multiplying Eq. (7a) by Ty(x,t), Eq. (8a) by
Ti(x,t), and Eq. (9a) by Tn(x,t), respectively, integrating them over
[0,L], summing the results over 1 <j <N, and performing some
algebraic manipulations, we obtain

/ ZCT ’dx—/LzN:—%Tzdx
] o aX J

j=1

/ch,[T ) dx+/ ZTQ,dx (13)

ij= 1
i<j

The left-hand-side (LHS) of the above equation can be written as
L N Lq N
I 2Ol & = /2 2 GTjdx (14)

Using the integration by parts, the boundary condition, Egs.
(11), and (7b), (8b) and (9b), one may obtain

[$ Trace 35 [ W
0 I ox .

=
= —Z[T; (L, 0)q;(L, t) = T;(0, )g;(0, 1)]

j=1

+Z/ a5 fdx

N

]dx

/%k(
d L-l N Tj 5 L N 1 5
:‘E/O i];quax_/o > g dd (19

By the Cauchy-Schwarz inequality (i.e.,2ab < ga?
&> 0[30]), we obtain

11

2 2

/ ZTQ]dx / ZCdeJr/ 2 Y (16)
Substituting Eqs. (14)-(16) into Eq. (13) gives

d ‘Ll N ) d L-l N ‘Cj ; 2

a/0 jZc,rjdua/o jzﬁqjdu/ Zk dx

N
/ZGU[T T / Zcrzdx+/0 %Z%Qfdx.
ij —

j ]
i<j

oy qj>dx

+ %bz, where

(17)

Taking out the third and fourth terms on the LHS because they
are non- negatlve introducing F(t) = fo ZJ I[C]Tz +k 'q?)dx and
fo Z, 1C1Q dx, and then integrating it with respect to t,

Eq (17) can be further simplified as follows:

0)< /0 F(s)ds + /0 Q(s)ds. (18)

By Gronwall's lemma (i.e., if ¢(t)>0 and y(t) >0 are
continuous functions such that ¢(t) <K+LfttU V(S)¢p(s)ds holds
on tp<t<t; where K and L are positive constants, then

t<ty, see [30]), we obtain for

ds) on tp<
/ Q(s)ds] < { (0)+/OtQ(s)ds},
(19)

and hence the following energy estimate for the N-carrier system
can be obtained as

/ Z[C,-Tf(x,r)+%qf(x,t)]dx

<efo{/LzN:CT2XO sz]dx+//ZC xsdxds} (20)

for 0 <t <ty and ty is a constant.

Eq. (20) implies that the solutions are dependent upon the ini-
tial conditions and the heat sources, and hence the hyperbolic
model is well-posed based on the definition given in [31].

3. Finite difference scheme

To develop a stable finite difference scheme, which satisfies a
discrete analogue of Eq. (20), we first design a staggered grid where
{T; }JN1 and {qJ}J ; are placed at different locations, as shown in
Fig. 2. Here, (T;),, and (q;)p, are denoted as the numerical approxi-
mations of Tj((m — J)Ax,nAt) and gj(mAx,nAt), respectively, where
Ax and At are the x-directional spatial and temporal mesh sizes,
respectively, and 1 <m <M for Tjand 1 < m <M+ 1 for gj, so that
MAXx = L. Furthermore, the first- order forward and backward finite
difference operators are defined as
qum _ um+1Ax umv V;Um _ Un A)’jm—l

Thus, a Crank-Nicholson type of finite difference scheme for
solving Egs. (7-9), in one dimension can be developed as

n+1 n+1 n
QUISSLAS [(cm . (ql)m}
N AL AN .
G { +(Tn (Tom O]
(21a)
o @) =@ @+ @) (Tom '+ (T
AL 3 —’(]v,((f s (21b)

36, (T + (Tm (T + (T
7 2 2
i=j+1
+ (Qj)nm+27
(22a)
j=1 j=2 j=M j =M+l

®  Location of temperatures

*  Location of heat fluxes

Fig. 2. Configuration of a staggered grid.
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(q])’”1 (@) (qj)”” + (q)m
At 2
n+1 n
—kjvx<w>, j=2,...,N-1, (22b)
(T = (Tw)n, @)m "+ (@)
Cw At = Vx { 2 }
(T ! + Tom (T + (Tn)n
+ Z Gin { - 5 }
+ (QN)’r111+iv
(23a)
(@) = (@ @) + (@) _ (T + (T
N AL 3 = kNVX( 3 ,
(23b)
where 1 < m < M for Egs. (21a), (22a) and (23a), and 2 < m < M for

Egs. (21b), (22b) and (23Db). It can be seen that the truncation error
of the above scheme at grid points ((m—1)Ax,nAt) for T; and
(mAx,nAt) for g; is O(At2 + Ax?). The initial and boundary condi-
tions are given as

@ =13((m-3) &%), @) = atoma)
(qj)g = (q]‘)lr\l/m =0,

for any time level n, where 1 <m <M for Tjand 1 <
gpandj=1,...,N.

To obtam a discrete energy estimate Wthh is an analogue of Eq.
(20), e multiply Eq. (21a) by AXM7 Eq. (22a) by
Axf*(m’", and Eq. (23a) by AXM, sum m over
1 <m < M, and then add the results together with respect to j. This
gives

Ax LG
a2

M

=1 m=1
N

j=1

(24a)
(24b)

m<M+1 for

(TR = (T}

v {(qj)"“ (qpﬂ {m);’;‘ + (Tj)ﬂ
X 2

.

=M, 2

c {(T D+ (Tl (T + (T»?nr (25)
v 2 2

N M n+1 n
(T +(T))
+sz Z(Qj)n+z J/m 5 J/m
Using the summation by parts, Eq. (24b), and then Egs. (21b),
(22b) and (23b), we can simplify the first term on the right-
hand-side of Eq. (25) as follows:

N g+ @t ][R+ (TR
« 2Ax 2

First Term = —Ax

-
Il
-

m=

i [am™ + @] [(T)m +
— 2AXx 2

(Tj)ﬂ

2AX 2

N
2
j=1
= —Axi 3 -(q')m (@ | [ (T + (Tj)&‘}
=
N
>

[@p + (@] [T + mﬂ
2AXx 2

N M
1

-3 e (@ la)nr - (26)

Furthermore, by the Cauchy-Schwarz inequality, we have

AXZ Z Q_] + (T)m

Jj=1 m=1

=1 m=1 j=1 m=1"J
1 N M , 1 N M 1
A DG + A0 Y 0 D = (@)
j=1 m=1 j=1 m=1 -
1 N M . N Ax L M1
< Y O{MR T M 5 325 e
X [(Q)n T (27)

Substituting Egs. (26) and (27) into Eq. (25) and then multiply-
ing by 2 give

j=1 m=2
L Y i) ()
=1 m=2 2k L o
M n+1 n n+1 n72
. (Ti)m + (T!)m _ (Tj)m + (T])m 1
+2Ax;;cu[ ) 5 <50

(28)
Taking out the third and fourth terms on the LHS of Eq. (28)
since they are non-negative, one may simplify Eq. (28) as

N

M
fo2@2[(%>"}2
ml j =
E Tj n+1 i Tj ni2
+AXZZM[( } AXZZ@[(QM

j=1 m=2 j=1 m=2
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<

o B

of [apn ] + ey

1 m=1

.
Il

tAxZN:Z

| =

)" (29)

-

—_

+ AtAx

D

m=1

M

0

=

If we denote F(n)=AxSY, G (Tl +AXS Yns
% (qj)"m]2 and Q(n+1) :sz;\’zlz"rﬁzlclj[(Qj)”mﬁ]Z, then Eq. (29)
can be further simplified as follows:

(1 —%>F(n+1) < (1 +§>F(n)+AtQ(n+1). (30)
Thus, we obtain from Eq. (30) that

) 1A
Fny < 2 2 Em At

2 n-1
At 1+4 1+4 1+5 -~
+1_A2r[l+<1_%t>+< - ot 1o max Q(k)
n 1440
1440\" At |16 -
<1AJ> F(0)+]7% T max Q(k)
B
1+40\" 1+40" -
= (1_9 F0)— |1- (1_% max Q(k)
1+40\" -
< T—a [F(0) + max Q(k)]. 31)

Using the inequalities (1 +¢)" < e™ for £>0, and (1—¢&)! < e
when 0 < ¢ <1, we obtain for sufficiently small At
E < "% . pMALTE A < MU A .
Fin) < e @ [F(0) + max Q(k)] < e*F(0) + max Q(k)).  (32)
Hence, the solutions of the scheme, Egs. (21-24) satisfy, when
At is sufficiently small

TmaxAXY D [(Q;)ﬁﬁ]z}, (33)
j=1

for any n in 0 < nAt < t.

Eq.(33)canbe considered as a discrete analogue of Eq. (20). Using
the discrete energy estimate, one may obtain that the scheme, Eqgs.
(21-24), is unconditionally stable. Indeed, if we assume that (T;);,
and (g;)p,. (Tj)% and (g;)}, are the numerical solutions obtained based
on the different initial conditions,(T;)°, and (T;)?, and different heat
sources, (Qj)"m*%and (Qj)”m*%. respectively, but the same boundary con-
ditions, then letting (E))7, = (Ty)y, — (Ty)n, (6;), = (q;)5, — (@), and
(&)m? = (Q))m% — (Q))y2, one may see from Egs. (21-24) that

m m

(Ej)ms (0)y, and (&), 2 satisfy

ms

Ep' = Ep o [0 + 00
G At = Vx 2

N [EDET + Eon EDRT (B
—;Gn{ 5 - 5

+(e)n, (34a)

)

(O = (01)m (O™ + (01) _ ((En” + (Enn,
o At * 2 DA S —

(34b)

(35b)

107
o) Ax=0.1
, A Ax=001
10 & Ax=0.001
S
107

Maximum Errors
=)
L

AAAAA A
AA YN
A
A

Ap,
7AYN N
N
Ap An
SOV, YN
4 000, AAAAA
Aapn
LN
7AYN A
Ap|

O
0,
O
0,
0,
OO
0,
O
OO
0,
<><><>
OO
<><><>

10-7....|....|....|....|....
0.1 0.2 0.3 0.4 0.5

Time, t

Fig. 3. Maximum errors between numerical solutions of T;(T, and T; and the
corresponding exact solutions obtained using 7; = 7, = 73 = 0.01 vs. time.
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where 1 < m < M for Egs. (34a), (35a) and (36a), and 2 < m < M for

Eqgs. (34b), (35b) and (36b) and

1
&k = ((m-3)ax). @ = Pman. (37a)
(03)0 = (0)y1 =0 (37b)
Hence, we conclude from the above derivations that (Ej);,, (0))y,

and (8,)"+2 should satisfy the discrete energy estimate, Eq. (33)

Ax; CSOIE) +A"sz

m=1

and Mass Transfer 52 (2009) 2379-2389

>3 2

Jj=1 m=1

132

7 } (38)

for any n in 0 < nAt < to. Because there is no restriction on the
mesh ratio, Eq. (38) implies that the scheme is unconditionally
stable with respect to the initial conditions and the heat
sources.

(&)

2 4 max Ax
0<k<n

-

4. Numerical example

To see the difference between the parabolic model and hyperbolic
model and to test the applicability of the finite difference scheme, we

N M
{Ax STGYIE? consider a 1D simple three-component system as follows:
j=1 m=1
a os b os
- t=0.1 [ t=0.1
0.4 k Parabolic-exact-t= 0.0 04 F Parabolic-exact-t= 0.0
. M o Parabolic-numerical-t = 0.0 A " o Parabolic-numerical-t = 0.0
[ % — — —Hyperbolic-exact-1=0.001 SBER — — —Hyperbolic-exact-t= 0.001
[ N Py Hyperbolic-numerical-t = 0.001] K 2 AN Hyperbolic-numerical-t = 0.00]
03 B — - — - —Hyperbolic-exact-1=0.01 0.3 pooe, — - — - —Hyperbolic-exact-t= 0.01
L C O Hyperbolic-numerical-t = 0.01 L %& <& Hyperbolic-numerical-t = 0.01
I —-—-- —Hyperbolic-exact-T = 0.05 N —--—" —Hyperbolic-exact-1=0.05
0.2 5006 O Hyperbolic-numerical-t = 0.05 02 F O Hyperbolic-numerical-t = 0.05
L G‘G% L
[ Sg el3)
0.1F S 0.1 £¥%%%seq,
= 0 = 0F
0.1F 0.1
02 02
03 F 03[
04 F 04
05¢CL I I I 05¢C I I I
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X X
C
t=0.1
Parabolic-exact- T = 0.0
o Parabolic-numerical-t = 0.0
— — —Hyperbolic-exact-1=0.001
A Hyperbolic-numerical-t = 0.001
— - — - —Hyperbolic-exact-1=0.01
< Hyperbolic-numerical-t = 0.01
- —--—-- —Hyperbolic-exact-t = 0.05
So N o Hyperbolic-numerical-t = 0.05
<k<;'u
> By
RS
2R
D SR
G GGGQGQG@G@ L W ‘
- O R
= 8Socs
R oo
R S4CACTetYote
SYS
,:§¥>€K9
5 %
8 00000
1 1
0.25 0.5 0.75 1
X

Fig. 4. Numerical solutions (a) Ty, (b) T, and (c) Ts, and the corresponding exact solutions at t = 0.1 obtained using 7, = 7 = 73 = 7 = 0.0, 0.001,0.01, and 0.05.
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o, 9q; T2(Ty - To) — m2(Ty — Ts) + 2m2e"t cos Tx, (39a) vyhere 0 < x < 1. We choose :approprlate initial and boundary condi
ot ox tions so that the exact solutions of the system can be expressed as
a oT4 follows:
T % +a, =221 (39b)
Ti=Are lcosmx, To=Are "icosmx, Ts=Ase "'COSTX, (42a)
oT: 0 . . .
aitz = % + 73Ty —Ty) — (T, — T3) + m’e “tcosmx, (40a)  q,=Bie ™'sinmx, q,=Bye ™'sinmx, q5=Bse ™'sin7x,
0 oT
T % +qy=— a—xz’ (40b)  where
A 2+ 2d2 + 3d3 + 2d2d3
1= )
%:_%+n2(71 T3+ (T, —T), (41a) didy +dids + dods + didads — 4
ot ox T A 4+d] +3d3 +d1d3
0 0 2=
5% g, = 203, (41b) did, +dids + dyds + dydyds — 4°
ot ox
a ool b ool
[ t=0.5 I 1=0.5
[ By . Parabolic-exact- T = 0.0 [ Parabolic-exact-T = 0.0
0.0075 o IE.’Iarab(;Jli(i:numer:cal»10=0(()),? 0.0075 o [m] Il_’[i;r}e;ﬁb:ﬁ;cﬁ—:u&:g;c:l—r():{)%?
i — — - erbolic-exact-T = 0. Sy — — - - -1 =0.
r & B N Higerbolicfnumerical—r =0.001 [ ] A gyperlgollif:-numerical—ora 0.001
[ — - — - — Hyperbolic- -1=0.01 9‘9()9 B — - — - — Hyperbolic-exact-T = 0.
L Q% Q" &> Hig:bgllit;;tﬁzr?cal—r =0.01 L o B & HiperboliC-numen‘cal—T =0.01
0.005 F - —-—-- — Hyperbolic-exact-t = 0.05 0.005 L Q‘(} BN —--—-- — Hyperbolic-exact-t = 0.05
3@89%% ;-: (@] Hyperbolic-numerical-t = 0.05 [ ; (@] Hyperbolic-numerical-t = 0.05
0.0025 [ ‘ 0.0025 ¢
= 0f ) 0
-0.0025 | -0.0025 |
-0.005 |- -0.005 |
-0.0075 | -0.0075 |
20.01 L 001 Lo vy I o
0 0 0.25 0.5 0.75 1
X X
(o] 0.01
[ t=0.5
N Parabolic-exact-T = 0.0
0.0075 + o Parabolic-numerical-t = 0.0
F — — — Hyperbolic-exact-t = 0.001
r A Hyperbolic-numerical-t = 0.001
i — - — - — Hyperbolic-exact-T = 0.01
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Fig. 5. Numerical solutions (a) Ty, (b) T, and (c) T3, and the corresponding exact solutions at t = 0.5 obtained using 7, = 7, =73 = 7 = 0.0, 0.001, 0.01, and 0.05.

(42b)

(43a)

(43b)
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Fig. 6. Numerical solutions (a) Ty, (b) T3, and (c) T3, and the corresponding exact solutions at t = 1.0 obtained using 7, = 7, =73 = 7= 0.0, 0.001,0.01, and 0.05.

6 +d; + 2d, + 6d; + dids + 2d,d;

As = 43
3 (1+ds3)(d1d; + dids + dyds + didyds — 4)° (43¢)
B = 7'Cd]A]7 B, = ﬂfdzAz, B; = degAg, (43d)
2 2 2
dl:lfrmz’dzzlfrznz’ 3T —m (43e)

It can be seen that the initial and boundary conditions for this
example are
T1(x,0) = A; cos 7x,

T,(x,0) = Ay cosmx, Ts(x,0) = A; cos 7x,

(44a)

q,(x,0) = Bysinmx, q,(x,0) =B,sinmx, ¢q5(x,0) = Bssinmx,

(44b)

0:(0,8) = 42(%,0) = q5(x,0) = q,(1,1) = 45(1,0) = q5(1,0) = 0.
(44c)

Furthermore, when 74,7, and 75 are zero, the hyperbolic model
will reduce to the corresponding parabolic model and the solutions
become T; = 3e ™! cos 7x, T, = e ™ cos 7tx, and T3 = 3e ™" cos Tix.

We first tested the accuracy of the numerical scheme by choos-
ing At=0.001 and Ax=0.1,0.01,0.001, respectively. The numerical
solutions were obtained by employing a Gauss-Seidel type of iter-
ation coupled with the Thomas algorithm for solving tridiagonal
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Fig. 7. Numerical solutions (a) Ty, (b) T, and (c) T3, and the corresponding exact solutions at t = 1.0 obtained using 7, = 0.0, 0.001, 0.01, and 0.05, and 7, =7 3 =0.0.

linear systems. The criterion for convergence in our computation
was set to be max;_; 2 3max;<men (T — (T))"P| < 107"2, where
I is the iterative index. Fig. 3 shows the maximum error between
the numerical solutions and the exact solutions at time level
NMAaXx;_1 23Max cpey| (TP — (TP ) vs. time t(=nAt). It
can be seen from Fig. 3 that the numerical solutions show to be
second-order accurate, as expected.

Figs. 4-6 show the numerical solutions (symbols) of T;,T, and
T3, and the corresponding exact solutions (lines) at t=0.1,0.5,1.0,
respectively, where 7, =7, =1 3=7 was chosen to be 0.0, 0.001,
0.01, and 0.05, respectively. It can be seen from these figures that
there are no differences between the numerical solutions and the

exact solutions. Similar results can be seen in Fig. 7, where

71 =0.0, 0.001, 0.01, and 0.05, respectively, and 7, =13=0.0, at
t=1.0, and in Fig. 8 for various values of 71,7, and 73 at t =1.0. In
these computations, we chose At =0.01 and Ax =0.01.

To see the difference between the hyperbolic model and the
corresponding parabolic model, we chose the same initial and
boundary conditions for both models as follows:

T5(x,0) = 3 COS TtX,

T:(x,0) = > COS TX, 2
(45a)

a T, (x,0) = cos mx,

q;(x,0) = §7t sin 7x,

q,(x,0) = E7tsin X, 5
(45b)

3 qy(x,0) = 2msin x,
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Fig. 8. Numerical solutions (a) Ty, (b) T3, and (c) T3, and the corresponding exact solutions at t = 1.0 obtained using various values of 7,7, and 5.

q1(0,t) = q2(x,0) = q3(x,0) = 4, (1, 1) = 45(1,0) = ¢5(1,0) = 0.

(45¢)

When 74,7, and 73 are zero, the system, Egs. (39-41), corre-
sponds to a parabolic model and the exact solutions are
Ty =3e ™ cosmx, T, = e ™ cosmx, and T3 =3e ™ cosmx. On the
other hand, when 74,7, and 5 are not zero, the system, Eqs. (39-
41), corresponds to a hyperbolic model. In the computation, we
chose At=0.001 and Ax=0.001 with 7;=1,=13=0.001, 0.01
and 0.05, respectively.

Fig. 9 shows the maximum difference between the hyperbolic
model and the corresponding parabolic model at time level
n(Max;_1 23Maxs cpmep |(T]PePN) 7 — (TPRN) T 1) vs, time (=nAt).
When 11 =17, =13=0. 001 as expected the solutions obtained by
the hyperbolic model are close to those obtained by the parabolic

model. However, when 7, = 7, = 73 = 0.01 and 0.05, there is a signif-
icant difference in solutions between the hyperbolic model and the
corresponding parabolic model. It can be seen from Fig. 9 that there
is a wave-like difference in solutions between these two models.

5. Conclusion

We have proposed a hyperbolic model for thermal analysis in a
generalized N-carrier system. The model is shown to satisfy an en-
ergy estimate, implying that the model is well-posed. Based on the
energy estimate, a finite difference scheme has been developed for
solving the hyperbolic model for thermal analysis in the multi-car-
rier system. The numerical scheme is proven to satisfy a discrete
analogue of the energy estimate, implying that it is unconditionally
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Fig. 9. Maximum difference in solutions between the hyperbolic model and
corresponding parabolic model vs.time.

stable. Numerical results show the difference between the hyper-
bolic model and the corresponding parabolic model. The obtained
energy estimate and the numerical scheme in one dimension can
be readily generalized to the case of multi-dimensions.
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